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Con�nement and the dual superconductor model

The color con�nement problem

Figure: qq̄ pair at distance R in the QCD vacuum

Decon�ned phase

E0(R)
R→∞−→ 2m

Con�ned phase

E (R) −→ σR,
√
σ = 420 MeV

At the scale of color con�nement non perturbative methods are needed
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Con�nement and the dual superconductor model

Dual superconductivity

Dual superconductor picture of con�nement in QCD proposed by
Mandelstam and 't Hooft.
[G. 't Hooft, in High Energy Physics, EPS International Conference, (1975)]
[S. Mandelstam, Phys. Rep. 23, (1976)]

QCD vacuum as a dual superconductor

Color con�nement due to the dual Meissner e�ect produced by

the condensation of chromomagnetic monopoles

Chromoelectric �eld connecting a qq̄ static pair squeezed

inside a tube structure: Abrikosov vortex

Relevance of nonperturbative study of chromoelectric �ux tubes at T 6= 0
to clarify the formation of cc̄ and bb̄ bound states in heavy ion collisions.
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Con�nement and the dual superconductor model

Coherence length and London penetration depth

[A. C. Rose-Innes and E. H. Rhoderick, Introduction to
Superconductivity (Pergamon Press, Second edition, 1978)]

λ London penetration
depth: characteristic
length of the
exponential decrease of
~B in a superconductor
ξ Coherence length:
length scale on which
the density of Cooper
pairs can change
appreciably
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Con�nement and the dual superconductor model

Fitting functions for El(xt) shape

Here enters the dual superconductor model

Ordinary superconductivity: magnetic �eld as function of the
distance from a vortex line in the mixed state
Two di�erent expressions coming, by dual analogy, from the London
model or, equivalently, the Ginzburg-Landau theory

1 Vortex as a line singularity

El(xt) =
φ

2π
µ2K0(µxt), xt > 0, λ� ξ ↔ κ� 1

[P. Cea and L. Cosmai, Phys.Rev. D52 (1995)]

2 Cylindrical vortex

El(xt) =
φ

2π

1

λξv

K0(R/λ)

K1(ξv/λ)
,

[J. R. Clem, J. Low Temp. Phys. 18, 427 (1975)]

[P. Cea, L. Cosmai, and A. Papa, Phys. Rev. D 86, (2012)]
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Con�nement and the dual superconductor model

Fitting function in our work

El(xt) =
φ

2π

µ2

α

K0[(µ2x2t + α2)1/2]

K1[α]
xt ≥ 0,

R =
√
x2t + ξ2v , µ =

1

λ
,

1

α
=

λ

ξv
, κ =

λ

ξ
=

√
2

α

[
1− K2

0 (α)/K2
1 (α)

]1/2
.

1 φ external �ux

2 µ = 1/λ London penetration depth inverse

3 1/α = λ/ξv with ξv variational core-radius parameter

4 κ = λ/ξ Ginzburg-Landau parameter
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Chromoelectric �eld on the lattice

Connected correlator from previous studies

ρconnW =

〈
tr
(
WLUPL

†)〉
〈tr(W )〉

− 1

N

〈tr(UP)tr(W )〉
〈tr(W )〉

[A. Di Giacomo, M. Maggiore, S. Olejnik, Nucl.Phys. B347 (1990)]

[P. Cea, L. Cosmai, Phys.Rev. D52 (1995)]

Continuum limit

ρconnW

a→0−→ a2g
[
〈Fµν〉qq̄ − 〈Fµν〉0

]
Color �eld strength tensor

Fµν(x) =

√
β

2N
ρconnW (x)

W Wilson loop

L Schwinger line

Up Plaquette

Ei (x), Bi (x) by changing UP = Uµν(x) orientation.

El(xt) component dominates at T=0.
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Chromoelectric �eld on the lattice

Connected correlator with Polyakov loops

ρconnP =

〈
tr
(
P (x) LUPL

†)
trP (y)

〉
〈tr (P (x)) tr (P (y))〉

− 1

3

〈tr (P (x)) tr (P (y)) tr (UP)〉
〈tr (P (x)) tr (P (y))〉

Color �eld strength tensor

Fµν (x) =

√
β

6
ρconnP (x) .

ρconnP suited for the T 6= 0 case

[A. Di Giacomo, M. Maggiore, S. Olejnik, Nucl.Phys. B347
(1990)]
[P. Skala, M. Faber, and M. Zach, Nucl. Phys. B494 (1997)]

P(x), P(y) Polyakov lines
separated by a distance ∆

L Schwinger line

Up Plaquette
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Details about simulations

Technicalities

Lattice and correlator features

Size 204 and periodic boundary conditions
Distance between Polyakov loops ∆ = 4a, 6a, 8a

LGT and action

SU(3) pure gauge LGT

Wilson action S = β
∑
x,µ>ν

[1− 1

3
ReTrUµν(x)], with 5.9 < β < 6.1

Algorithms

Cabibbo-Marinari algorithm combined with overrelaxation
APE smearing procedure to increase signal-to-noise ratio
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Details about simulations

Smearing procedure: motivations and method

Replacement of the previously used cooling mechanism
Possibility to check previous results in many di�erent cases

I Wilson correlator and Smearing
I Polyakov correlator and Cooling
I Polyakov correlator and Smearing

APE smearing procedure

[Albanese et al., Phys. Lett. B 192 (1987)] [Bonnet et al., Phys. Rev. D 62 (2000)]

Cµν(x) = Uν(x)Uµ(x + ν̂)U†
ν(x + µ̂)

+ U†
ν(x − ν̂)Uµ(x − ν̂)Uν(x − ν̂ + µ̂)

Ũµ(x) = PSU(3)[(1− α)Uµ(x) +
α

6

∑
µ 6=ν

Cµν(x)],

α = 0.5, 16 < nape < 50
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The measuring process at a glance

Our investigation in few steps

For di�erent values of β

Smearing over a thermalized �eld
con�guration

Measurement of El(xt) through ρ
conn

P

by varying plaquette position

Fit of the shape of El(xt) to extract
the parameters φ, µ, λ/ξv , κ

Analysis of the behavior of φ, µ, λ/ξv ,
κ with smearing, looking for a plateau

Estimate of λ and ξ from a scaling
analysis
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Results from the �t and parameters vs smearing

Measurements at integer and noninteger distances

0 5 10
x

 t

0

0.05

0.1

E
l

 Clem fit

SU(3), 20
4
 lattice, β=6.0 

10 smearing steps, ∆=4a

Figure: Longitudinal chromoelectric
�eld El versus xt , in lattice units for
∆ = 4a and after 10 smearing steps

Nonintegers distances included
to check for rotational
invariance restoration

Restriction only to points at
integer distances:

I Smaller χ2r
I CPU time saved

Consistent values for parameters in
both cases
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Results from the �t and parameters vs smearing

Parameters vs smearing: looking for a plateau
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Figure: φ vs smearing (∆ = 6a)
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Results from the �t and parameters vs smearing

Parameters vs smearing: looking for a plateau
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Figure: κ vs smearing (∆ = 6a)
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Results from the �t and parameters vs smearing

Plateau values vs β comparing all the sizes

∆ variation to study contamination e�ects due to the proximity of the
static color sources.
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Figure: Plateau values for µ vs β
(∆ = 4a, 6a, 8a)

5.9 6 6.1

β

0

0.25

0.5

0.75

1

 λ
 /

 ξ
v

∆ = 4a
∆ = 6a
∆ = 8a

Figure: Plateau values for λ/ξv vs β
(∆ = 4a, 6a, 8a)

∆ = 6a good compromise between contaminations and signal-to-noise.
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From lattice to physical units

Setting the scale

Scaling of the plateau values of aµ with the string tension through the
parametrization.

√
σ(g) = fSU(3)(g

2)[1 + 0.2731 â2(g)

− 0.01545 â4(g) + 0.01975 â6(g)]/0.01364

â(g) =
fSU(3)(g

2)

fSU(3)(g2(β = 6))
, β =

6

g2
, 5.6 ≤ β ≤ 6.5

fSU(3)(g
2) =

(
b0g

2
)−b1

2b2
0 exp

(
−1

2b0g2

)
, b0 =

11

(4π)2
, b1 =

102

(4π)4

[R. G. Edwards, U. M. Heller, and T. R. Klassen, Nucl. Phys. B 517, (1998)]
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From lattice to physical units

Field in lattice and physical units

0 0.2 0.4 0.6 0.8 1 1.2

x
t
 (fermi)

0

0.05

0.1

0.15

0.2

0.25

0.3

E
l  

(G
e
V

2
)

 Clem fit

SU(3), 20
4
 lattice, β=6.0 

30 smearing steps, ∆=6a

0 2 4 6 8 10

x
t 
(lattice units)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

E
 l

 (l
a
tt

ic
e
 u

n
it

s)

Figure: Longitudinal chromoelectric �eld El versus xt , in lattice units and
in physical units, for ∆ = 6a and after 30 smearing steps
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Scaling

Parameters scaling behavior: sizes compared
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Scaling

Parameters scaling behavior: ∆ = 6a
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κ = 0.178(21) κold = 0.243(88)

λ = 1/µ = 0.1750(63) fm ξ = 0.983(121) fm

Here `old` means Wilson connected correlator and cooling as in
[P. Cea, L. Cosmai, and A. Papa, Phys. Rev. D 86, (2012)]
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Summary and outlook

SU(3) vacuum as a type-I dual superconductor in agreement with

[A. Shibata, K.-I. Kondo, S. Kato, and T. Shinohara, Phys. Rev. D 87, (2013)]

λ in agreement with [P. Cea, L. Cosmai, and A. Papa, Phys. Rev. D 86,

(2012)][P. Bicudo, M. Cardoso, and N. Cardoso, PoS LATTICE2013 (2014) 495]

Relation to the �intrinsic width� of the �ux tube [M. Caselle and P.

Grinza, J. High Energy Phys. 11 (2012) 174.] to be investigated

Finite temperature

Introduction of dynamical quarks d.o.f. (implementation of ρconnP

within the MILC code)

Check of the validity of the model (goodness of the �t): R and xt
ranges
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THANK YOU
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